
Strings and Variables 1

Strings and Variables

To understand primitives, we have to first understand variables.

Variable is a way to store some value which you can use later in the program.

To create a variable, we will write let and then the variable name , then equals to then a string in single quotes.

What this will do is, it create a binding between variable name and its value. Now, from now on this variable name can be

used if you want to use the value it is pointing to.

To print this, we will use console.log(variable_name) console.log

will print the value pointed by this variable.

There are some rules to write variable names.

can not start with a number. (can have number in between)

can not include any special character (except $ and _) can

contain any any alphabet can not give space between

characters.

can not use any keywords as variable names.

There is a convention for variable names for multiple words.

In JS, there is a convention to use camel case.

Strings and Variables 2

One way is to create a new variable for space.

Another way is to add string directly without creating a variable.

All three are strings, the only difference is the first and last string are referenced through variable and the middle is string

is written as it is.

This is the use case of variables, we dont have to write ‘Lionel Messi’ everywhere. We can just use anotherName variable.

You can not use multiplication, division and subtraction with strings, only addition which will cause concatenation.

Here we are using single quotes to write strings.

We can use double quotes also and backticks to create strings.

They differ in a way how they handle special characters.

Backslash has some special powers inside strings. Whenever a \ is found inside string, it indicates the character after it has

some special meaning. This is called escaping characters.

If you want to use single quote inside a string with single quotes.

Also in JS, string and character is same thing.

Strings and Variables 3

Backticks (template strings)
Usefulness of template strings, is that we can include variables inside strings. We dont have to use + operator multiple

times ton include variables.

Also with template strings, it is very easy to rearrange strings.

1

Numbers

In javascript there is no different data types for float and negative numbers.

Numbers are super flexible in JS.

We can do all kind of mathematical operations on numbers, like addition, subtraction,

multiplication, division and modulus (%).

Modulus is used for remainder.

There is also exponentiation operator in Javscript

What will be the output of the below code?

Precedence of operators

Parenthesis have highest precedence

Then exponentiation operator.

Then multiplication and division have same precedence.

Then addition and subtraction.

Numbers

If two operators have same precedence, then value is calculated from left to right.

1

Numbers 2

Some things about variables

But what you can do is reassign variables.

There is one interesting thing about Javascript, is that it is weakly typed, which means we can

reassign one variable to different types.

C++ is a strongly typed language. You can assign a variable of one type to another.

Some things about variables

1

Booleans

We can assign only two boolean values, true and false.

We can get these booleans using conditional operators also.

These operators can be used to compare any values.

There are other comparison operators like, >, <, ≥, ≤.

Booleans

Decision making

Decision making
IF

For example

You dont usually write these true and false directly, you write some condition inside it.

This is because if statement will run only the single statement. If you want to run multiple

statement for the if statement, you have to create a block.

Block is used to group multiple statements, where it is expecting only a single statement.

To create a block, we have to use curly braces.

Decision making 1

ELSE

IF ELSE

We can also apply multiple conditions using if-else

2

 {

 {

Decision making

It will run the statement belonging to the first condition which is true.

3

Logical Operators
&&

Both condition needs to be true.

||

Logical OR operator means, any one can be true

!

Logical not operator. Its a unary operator. It flips the value given to it.

As soon as the final result of the logical operation is known, execution stops.

Logical Operators 1

This is because, execution stops as soon as it check score > 33 is true.

Logical Operators 2

Functions 1

Functions
Functions

Functions are the programs within a program. We can run it multiple times within a

program.

The syntax for function is as follows

For example, you can define a function as follows

Function on its own will do nothing, until we call it.

To call function we have to write function name with open and closing brackets

We can call this function as many times, as we want.

Functions 2

We can pass value to functions

argument inside the function just like we name a variable.

So, num3 is now pointing to 10.

We can call this function multiple times with different values.

Functions 3

Returning value from the function

You can use return statement only once inside a function. You are calculating the answer

and returning its value.

As of now, the above code is doing nothing.

You can store the value returned by the function in a variable.

Challenge (grade calculator)

Create a function which takes total marks of student as an argument and return a grade

for that student.

undefined and null 1

undefined and null
How do we declare a variable?

But what if we declare a variable but do not assign it.

undefined in JS is used to represent absence of a value. We did not assign undefined

to the variable. JS automatically assign undefined to the variable, if we do not assign it.

This can be useful inside an if statement to check if a variable is ever been assigned a value

or not.

undefined and null 2

Another example (undefined in argument)

But what if we don’t send an argument to the function.

Another example (undefined in return)

result variable is going to store the value, whatever returned from the function. But

what if nothing is returned from the function. Then in that case, result variable will be

pointing to undefined .

From above examples, we can see that undefined gets implicitly assigned by the JS, if we

ourselves do not assign some value.

Sometimes, in your program you want to clear some value. For example when user clear

the form or clear the input field, unselect the dropdown, etc.

In that case, we can explicitly assign undefined to a variable.

undefined and null 3

But there is one problem with the above approach. We do not know, the variable is not

defined or the variable is explicitly set undefined. And sometimes it is very important to

know the difference.

Challenge (grade calculator contd.)

Add feature to the function. When no marks is provided by the user, set grade to E

1

Functions - Multiple arguments and

argument defaults
Passing multiple arguments

We can provide multiple arguments using comma separated values.

num1 will be pointing to 4 and num2 will be pointing to 6.

Providing default value to the argument

We can provide default value to arguments using the below syntax.

Functions - Multiple arguments and argument defaults

 , it will

2

Challenge (grade calculator)

Add default value to marks argument if it is not provided.

1

Functions - Multiple arguments and argument defaults

Objects
Objects in JS is used to represent a similar group of things. For example, in a to-do

application, we have to store title , description and completion. We can store them

separately. But it will be better if we store them together as they together belong to a to-

do.

Similarly with note-taking app. A note contains a title and description. Instead of storing

these two values separately in two strings, it will be better if we can store them together as

note.

That’s where objects come in. Objects can be used to store similar information in a single

place.

Object starts with curly braces and inside that we have to write key-value pairs. Keys are

called properties and values can be anything, number, string, Boolean, function or object.

You write properties just like you write variables.

Dot notation

We can access properties from todo using the dot notation.

For example, if we want to print the title of the todo

2

Objects

Changing properties

We can also change the property of an object.

Challenge

Create a note object with title, description and pages properties.

1

Objects

Methods
Methods are nothing but object properties that are function.

As we have seen, object properties can be number, string and Boolean, but object

properties can also be functions.

Syntax:

You can also pass arguments to methods

But it will be better if we don’t have to hardcode marks and use the marks on the object

itself.

JS provide a special keyword called this . The value of this is the object itself on which the

method is called.

Methods

2

1

Methods

Arrays
Arrays are used to store collection of multiple items under a single variable name.

Syntax to declare an array

Arrays items can be of any type. They do not have to be same.

Grabbing individual items

To grab individual items, we will use the bracket notation, to grab items using its index in the

array. Indexing starts from 0 just like other programming languages.

If we try to acces the index that does not exist, we will not get an error, we will get

Setting items

You can also set item at a particular index

2

Arrays

Array properties and methods
length

To get the number of items in an array, there is a property on array which you can access

Now, lets say, you have to add items to the array, you can use push() method on an array. You

have to pass the item you want to add to the push() method.

We can also remove item from the end of an array using pop() . pop() method also returns the

remove item which you can store in a variable.

This method add items to the beginning of an array.

Array properties and methods 1

This method is used to remove item from the beginning of an array.

The method discussed above changes the original array.

This method returns the string. by concatenating all the elements of any array.

By default it will use comma as a separator. You can pass different separators

Return true or false depending upon whether an array includes a certain element or not.

Array properties and methods 2

Loops
If you want to print from 1 to 10, you can write console.log for all the items. But that would be

inefficient. Instead we can use loops to do so.

for loop

Looping through array.

There is one more syntax which you can use to loop through array.

Loops 1

Loops 2

3 ways to declare a variable
We have seen one keyword let using which we are declaring variables.

There are two more keywords using which we can declare variables.

const

variables.

Although, you can reassign properties of an object.

declare variables and not assign it.

In case of let , it is okay to declare a variable but not assign it. JS will automatically assign

undefined to it. In case of const , it is compulsary to assign it a value.

3 ways to declare a variable 1

var

 var let const

 ✅ redeclare ❌ cannot redeclare ❌ cannot redeclare

 variables variables variables

✅ reassign ✅ can reassign ❌ cannot reassign variables variables variables

3 ways to declare a variable 2

Execution context and Call stack 1

Execution context and Call stack
We will deep dive into JS Engine to take a look how JS Engine actually execute JS code.

Whatever code is executed in JS is executed inside execution context.

Execution context consists of two things

Memory creation phase

Code execution phase

Before executing any line of code, JS Engine will create an execution context. The first EC

that is created is called Global Execution Context.

What JS engine will do is skim out all the variables and functions which are in global scope.

For example

First, memory creation phase will run. In memory creation phase, all variables get skimmed

out and are assinged undefined .

After memory creation phase gets completed, code execution phase gets started. In this

phase JS code will be executed line by line and username and person will be assigned

respective values.

Execution context and Call stack 2

As we have discussed, during memory creation phase, variables and functions are skimmed

out.

Execution context and Call stack 3

Then there is function definition, so nothing will be executed.

Then there is a function call. Whenever a function is called, a new execution context is

created for that function. And it will go through its own memory creation and code

execution phase.

Execution context and Call stack 4

Then the code execution phase for this execution context will run, which will assign 10 and

20 to respective variables.

Then the return statement is executed. Whenever a function return something or its

execution ends, its execution context gets destroyed.

And when all of the code gets executed, Global execution context also gets destroyed.

Call stack
These execution contexts are managed inside a stack called Call Stack.

Execution contexts are pushed and poped from this call stack.

Hoisting
What will be the output of the below code?

Now, what will be the output of below code?

The above code will not produce error.

As we have discussed in Execution context, in memory creation phase, all global variables are

assigned undefined and all functions are assigned whole function code before any code is

executed.

When the first line of code runs, it will find a in global scope whose value is undefined.

myFunc() variable is assigned whole function, so it will be executed

Question

Hoisting 1

Scopes 1

Scopes

languages.

Scope for a variable roughly can be defined, where that variable can be accessed.

For example, in the above case, variable b has global scope. It can be accessed any where in

the code.

When the function execution context is created, it will try to find b in its local scope (or

memory). If it does not find it there, it will try to find it in the lexical scope (or memory or

environment) of its parent.

 b

Scopes 2

Another example

Lets see how this function runs

First the memory creation phase will run for global execution phase

Then the outer() function will be called. To run that function, an execution context is created and its

memory creation phase is run.

Then the outer function will start exeuting one by one.

First b will be assigned 100

Then inner function will be called. The execution context for inner function will be created.

Scopes 3

When the inner function is executed line by line, it will look for variable b in its local scope.

When it does not find it there, it will look it in the lexical environment of its parent. This chain

of lexical environment is called Scope Chaining

Scopes 4

More differences between var, let and const 1

More differences between var, let

and const
Blocks
To understand this concept, we must know what is a block in javascript. You can create a

block using curly braces.

The above code is a valid JS code. We have used blocks in if statement when we

Scope
let and const are block scoped while var is a function scoped. That means the variables

declared using

More differences between var, let and const 2

let is only accessible inside the block it is declared.

Question

Question

What will be the output of below code?

 x

More differences between var, let and const 3

Hoisting Question

let and const are hoisted differently as compared to var .

let and const are hoisted but they remain in temporal dead zone. You can not

access those variables declared with let and const until they are in temporal dead zone.

They remain in temporal dead zone till they are initialized.

Take a look at the error. Error is not that it is not defined. The error is you can not access

them before initialization.

Higher order functions 1

Higher order functions
Functions that operate on other functions, either by taking them as arguments or by

returning them, are called higher order functions.

Passing function to another function

You don’t have to declare a new function to pass to another function. You can declare

inside an argument directly like below.

Higher order functions 2

Returning function from another function

Some real-world HOF

Lets say you have an array with numbers, strings and booleans. You have to write functions

that will return all the strings present in the array, then all the numbers and then all the

booleans.

Higher order functions 3

As you can see, you are repeating a lot of code. You can extract out the logic of checking

item and pushing it into the array as it is same for all the 3 functions. The changing part is

the condition. We can pass a function to check for 3 conditions.

Higher order functions 4

We are passing function whose job is check for different type into a function whose job is

to check and push items into the array. Separation of concern.

Some more array methods
forEach()

forEach method takes callback function as an argument which is called for each item

of an array. You are not calling this function yourself. forEach is calling your function for each

item. You are just passing it as an argument.

You can create variable for a function and then pass or you can directly declare a function inside

an argument.

The callback function you pass, receive array item as an argument.

The callback function also receive index as a second argument.

map()
This method also takes callback function as an argument, but return a new array populated by the

result of calling that callback function. The function you pass in as a

Some more array methods 1

callback will be called for each item in an array and whatever you return for that item will

become the new item in a new array.

filter()
This method also takes callback as a function and return a new array. The callback function will be

called for each item.

If you return true, then that item will be included in the new array otherwise it will not be

included.

There are many other methods, you can read them on MDN docs.

Some more array methods 2

Closures 1

Closures
Consider the below function

What will be the output of below function? As already discussed, inner function will have

access to the lexical environment of its parent.

So function printName will have access to username variable which out of its scope but is in the

lexical scope of its parent.

Now, what if, instead of calling printName function inside someFunc , we return

printName function and call it outside the scope of someFunc , like below. What will be

the output?

though it is not in its scope?

This is a closure → A function bundled together with references to its surrounding state or

we can say lexical environment is called closure.

It will print

Closures 2

When printName function was defined, it has access to username variable. So, it will always

have access to username variable even though the variable is not in its scope or its parent

scope.

Use of closure
There are many uses of closures, one of them is

Emulating private method

Before classes, JS does not have any way to declare private properties or methods, but with

closures, you can emulate private methods.

Lets say you want to build a counter. But you dont want user to update count directly but

give them some methods like increment , decrement to change the value of count.

You can do is easily in other languages with classes and private property count . In JS, you

can use closure.

You can provide different methods to manipulate count for end user.

Closures 3

Prototypes 1

Prototypes

We also accessed toString method on todo object. But this method does not exist on todo

object. We should be getting undefined , but instead we are getting some value, which

indicates that this method do exist on the todo object. How is it possible?

There is a thing in Javascript called Prototypes .

If you try to access a property of an object, what JS will do is, it will try to find that property

in the object. If it fails to find that property, then it will search its prototype for the

property. Prototype is another object which is used as a fallback source of properties.

Prototypes 2

So, prototype is just another object which is used as a fallback source for properties.

Every object in Javascript has a prototype.

You can check the prototype of any object using __proto__ property.

So,

Prototypes 3

Accessing properties on Arrays
We have discussed few properties and methods on arrays, like push and pop . But how are

we able to access these properties and methods on an array. We have seen that only

objects have properties and methods not arrays.

What JS will do behind the scenes, is convert this array to an object.

So, arrays are basically an object, on which we can access properties and methods.

Prototypes 4

For example, we can access length property.

We have seen the object to which an array is converted to. But that object do not have push

and pop properties. Where do those properties come from.

These properties come from its prototype. As we have discussed that when we try to access

the property on an array, it is converted to an object. So that object has a prototype which

has all these properties and methods, push , pop , shift , unshift , etc.

This is a prototypal chain.

When we try to access property on an array, it will first convert array to an object. If it does

not find property there, it will search Array.prototype , then it will search

Accessing properties on strings
When we were discussing strings, we used some properties and methods like toUpperCase ,

toLowerCase , trim , etc. How are we accessing these properties and

methods on strings?

Just like arrays, strings are converted to objects when you try to access properties on that

string.

Prototypes 5

Inheritance
Prototypes can be considered as inheritance, as it can be looked as objects are inheriting the

properties of Object.prototype .

Constructor functions 1

Constructor functions
What will be the output of below code?

We have already discussed that, if you don’t return anything from the function then

undefined is returned.

Now, what will be the output of below code.

We can generate objects using functions using the new keyword infront of function call.

These functions are called Constructor functions.

We can pass custom values for username and email.

Constructor functions 2

Constructor functions are basically used as a blueprint to generate objects of same type

with same properties.

If there are no constructor functions, we have to hardcode objects with the same properties

on every object.

Lets add methods to the generated object.

You can add as many properties you want and all the generated objects will have the same

properties.

There is a convention in JS to capitalize the name of constructor functions. It is just a

convention. It will still work if you don’t capitalize.

Constructor functions 3

You have created your own custom data type. Just like there are Array datatype, String

datatype., now there is User datatype. You can create new objects of that datatype using

new keyword.

Constructor functions 4

Now, as you have seen the description method is same for all objects. It will be better that

we move that description method to User.prototype.

Now, the prototype chain will look like below

Constructor functions 5

Now, when we try to access description property on user1 object, it didn’t exist. So it will

check its prototype for that method.

Class syntax 1

Class syntax
Just like let and const , classes are very new to Javascript. It is just an alternative way to

write constructor functions. It is just the Syntactic sugar. It is doing the exact same thing as

constructor function, its just the sytax is different.

Consider the below constructor function. We have to convert this into Class syntax.

class.

You can literally copy paste the constructor function.

You can add methods too. In this case too, you just have to copy paste. Its just the syntax is

different, functionality is same.

Class syntax 2

We are getting the exact same behavior as we got with constructor function.

Inheritance
Lets say we want to create a Student class which has all the properties and methods of Person

class. One way is to define a new class and add all properties and methods again on that

class.

Other way is inheritance.

Lets say we want to create a class called Student with all the properties of Person class. One

way is to copy all the properties and methods from Peron class.

Other method is Inheritance.

We can create a class that inherits properties from other class. Just like what we did with

prototype inheritance.

We can inherit all properties and methods of one class using extends keyword.

Class syntax 3

Now Student class has all the properties (firstName , lastName and email) and all the

methods (constructor and getFullName) of parent class Person .

You can override some of the methods.

For example, if you want to add some additional fields including already existed fields to

Student class like groupNo . You can override the constructor function because that’s where

you are initializing properties

You can use the same method or you can override it.

You can also override this property just like constructor.

Class syntax 4

Async programming 1

Async programming
Javascript is a synchronous single threaded language.

Single threaded means that Javascript engine can execute only one statement at a time. It

can not run multiple statements. It has a single call stack to execute the statement. It does

not have multiple call stacks to run statements in parallel.

Synchronous means that it will execute statements in order.

Basically, JS Engine will wait for nothing, it will keep on executing single statements line by

line.

But what if we have to wait for some time and then run some code. How you are going to

achieve that in JS.

Lets say you want to run the seconds log statement after 4 seconds.

will help you to run some code after some time.

milliseconds as a second argument. The callback function will run after 4 seconds.

What will happen, first start will print, then end will print instantly then after 4 seconds run

after 4 seconds will print.

But how is it possible? We just discussed that JS will wait for none. And it will execute

statements in single order. So, how JS is running console.log after 4

seconds.

Async programming 2

setTimeout is not a part of JS. Javascript Engine do not have a timer to time for

4seconds and then run the code. It is the browser that has timer and provide us this

setTimeout function.

Browser has many other useful things like console, local storage, session storage, fetch,

viewport, location and many other things.

Browser provide these things to the javascript engine. Javscript as a language has no local

storage, timer, location and other things.

Browser provide these things to the JS engine.

But how browser is providing these things to Javascript?

Browser provide these things using Web APIs. Basically, browser provide some objects,

some functions to JS Engine which we can use to access these functionalities.

setTimeout is one such function which helps us to access timer in the browser

through Javascript.

Lets see how does these things work behind the scenes.

Async programming 3

As we have already discussed, before running any code, an execution context is created and

pushed inside a call stack.

As there are no variables, so there is nothing to do in memory creation phase. Then code

execution phase will start. Each line will be executed line by line.

When first line is executed, JS engine will access the console from the browser and

Then the second line will be executed, what it wil do is, it will contact the browser.

Browser will start a timer for 4 seconds and register a callback function.

print

Async programming 4

After a callback is registered, javascript engine will move to the next line for execution. It

will not wait for 4 seconds to run the callback function because JS is synchronous.

It will execute the last line and print end in the console.

Async programming 5

As the last line is executed, global execution context is popped out of the call stack.

How will that callback which is registered to run after 4 seconds be executed?

As we know, in Javascript everything is executed inside the execution context which is

inside the call stack. So, it is the duty of browser now to send that callback function to the

call stack.

Lets see how, browser send that callback function to the call stack.

Async programming 6

When 4 seconds elapsed, the registered callback is pushed to the callback queue and will

wait for its turn.

What even loop will do is, it will keep and eye on call stack. As soon as the call stack gets

empty, event loop will push the callback from callback queue in the call stack to get

executed.

As callback is a function, it will create its own execution context and start executing

Async programming 7

So, the job of callback queue is to hold all the callbacks that are registered for their turn.

The job of event loop, is to keep an eye on the call stack. Once call stack get empty, event

loop will start pushing callback functions to the call stack.

Question

Question

s

Callback Hell 1

Callback Hell
Lets say you are buiding an application like instagram or instagram clone. And you want to

allow users to upload their pictures. Now, what functions will you write to allow user to

upload their pictures.

When user click on upload button, you will run a function called step1 that will open a file

explorer or camera to chose image.

Once user selects image, you will run another function step2 and pass that selected image to

that function. This function step2 will let user to add filters to their image.

Then you will allow user to add caption. For that you will write another function, lets say

step3 for that which will take that filtered photo as argument and let user add caption to the

image.

Then, it the last step, you will write a function step4 to finally upload the image. That

function will take final image and caption as argument.

We are going to mock this behaviour. Lets say each function take some time to complete

and one function is dependant on another.

Callback Hell 2

How are you going to achieve this? One function should run after completion of the

previous function and also have the output of the previous function.

Let consider the 4 functions are as below

Callback Hell 3

You can try calling these function like below. Will it work?

As

step2 is called image variable is undefined as nothing is returned from step1 . So

Also another problem is step2 takes least time to finish, so it gets printed first and then step4

, then step3 and at last step1 . This is not what we want. We want it to run sequentially, in

order.

How are we going to achieve this?

We can solve this problem using callbacks.

Callback Hell 4

What we will do is, we will pass callback functions to each step and will run that callback

function when that step ends.

Lets just focus on first two steps.

We will pass a callback function to step1 and the job of that callback function is to call step2

with tht required image.

Callback Hell 5

Callback Hell 6

Pros
Pros are that you can call one function after the completion of other function in sequential

order. Basically you can do async stuff using callbacks

Cons
There are 2 problems with this approach.

One is quite evident is that our code is growing horizontly instead of vertically. As we add

more callbacks, it will get difficult to maintain the codebase.

Solution
You can solve these problems using Promises.

Callback Hell 7

	Backticks (template strings)
	Numbers
	Precedence of operators

	Some things about variables
	Booleans
	Decision making
	IF
	ELSE
	IF ELSE

	Logical Operators
	&&
	||

	Functions
	Functions
	Returning value from the function
	Challenge (grade calculator)

	undefined and null
	Another example (undefined in argument)
	Another example (undefined in return)
	Challenge (grade calculator contd.)

	Functions - Multiple arguments and argument defaults
	Passing multiple arguments
	Providing default value to the argument
	Challenge (grade calculator)

	Objects
	Dot notation
	Changing properties
	Challenge

	Methods
	Arrays
	Grabbing individual items
	Setting items

	Array properties and methods
	Loops
	for loop

	3 ways to declare a variable
	const
	var
	var let const

	Execution context and Call stack
	Call stack

	Hoisting
	Question

	Scopes
	Another example

	More differences between var, let and const
	Blocks
	Scope
	Hoisting Question

	Higher order functions
	Passing function to another function
	Returning function from another function
	Some real-world HOF

	Some more array methods
	forEach()
	map()
	filter()

	Closures
	Use of closure
	Emulating private method

	Prototypes
	Accessing properties on Arrays
	Accessing properties on strings
	Inheritance

	Constructor functions
	Class syntax
	Inheritance

	Async programming
	Question
	Question

	Callback Hell
	Pros
	Cons
	Solution

